

## Organic Chemistry Revision Sheets Acyl Chlorides | Nucleophilic Addition-Elimination (with amines)

## Reaction

**REACTANTS:** Acyl Chloride and Amine (primary)

PRODUCT: (Secondary) Amide and Alkyl Ammonium Chloride

**REACTION TYPE:** Nucleophilic Addition-Elimination

REACTION:  $R \subset C$   $R^1 NH_2$   $R \subset C$ Acyl Chloride  $R^1 NH_2$   $R \subset C$   $R^1 NH_2$   $R^1 NH_2$ 

## Mechanism

The amine acts as a **nucleophile** due to the lone pair of electrons on the nitrogen atom attacking the carbon (with a partial positive charge) in the acyl chloride. A new carbon-nitrogen bond forms between the acyl group and the ammonia. The carbon-oxygen double bond breaks to a single bond, giving the oxygen a negative charge. The carbon-oxygen double bond reforms, carbon-chlorine bond breaks and a chloride ion is removed. Amine present removes H<sup>+</sup> ion from -RCON<sup>+</sup>HR<sup>1</sup> group. **Addition-elimination reaction.** 

$$R \xrightarrow{\delta_{+}} C \xrightarrow{0} : NH_{2}R^{1} \longrightarrow R \xrightarrow{-C} - N \xrightarrow{R} H \longrightarrow R \xrightarrow{-C} - N \xrightarrow{-R} H \xrightarrow{-R}$$

## **Notes:**

- Ammonia produces a primary amide and ammonium chloride salt when reacted with acyl chlorides.
- Primary amines produce a secondary amide and an alkyl ammonium chloride salt when reacted with acyl chlorides.
- Secondary amines produce a tertiary amide and an alkyl ammonium chloride salt when reacted with acyl chlorides.

