

Organic Chemistry Revision Sheets Alkenes | Electrophilic Addition (with Br₂)

Reaction

REACTANTS: Alkene and Bromine (Br_o)

CONDITIONS: Non-polar organic solvent (or pure liquid bromine)

PRODUCT: Dibromoalkane

REACTION TYPE: Electrophilic Addition

REACTION: (example of ethene)

Alkene Dibromoalkane

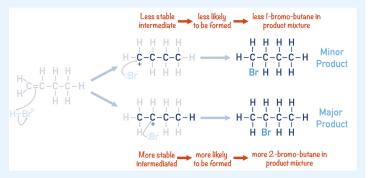
Mechanism

 ${\bf Br}_2$ acts as an electrophile so the bromine-bromine bond is polarised by the carbon-carbon double bond so the bromine atom with a partial positive charge accepts an electron pair from the carbon-carbon double bond. During the reaction the carbon-carbon double bond breaks, forming a postively charged carbon (carbocation). The negatively charged bromide ion bonds with the carbocation. ${\bf Br}_2$ is 'added' across the double carbon-carbon bond. *Addition reaction.*

- The high electron density in the carbon-carbon double bond (pi-bond) polarises the bromine molecule to create the Br^{δ+} electrophile.
- This reaction is often used to identify an alkene as the colour of bromine water changes from orange / brown to colourless when mixed with an alkene (due to the above reaction).

REACTANTS: Alkene and HBr (Hydrogen Bromide)

PRODUCT(S): Bromoalkane


REACTION TYPE: Electrophilic Addition

REACTION: (example of ethene)

Mechanism

HBr acts as an electrophile because its hydrogen atom (with a partial positive charge) accepts an electron pair from the carbon-carbon double bond. During the reaction the carbon-carbon double bond breaks, forming a postively charged carbon ion (carbocation). The negatively charged bromide ion bonds with the carbocation. HBr is 'added' across the carbon-carbon double bond. *Addition reaction*.

- If a primary or secondary carbocation can be formed during the reaction, the secondary carbocation will form more readily than the primary carbocation - creating 'major' and 'minor' products*.
- The secondary carbocation is more stable due to increased positive inductive effect from neighbouring alkyl chains.
- *The product mixture will contain more of the major product than the minor product.

REACTANTS: Carbonyl (aldehyde or ketone) and KCN (in acid)

PRODUCT: Hydroxynitrile

REACTION TYPE: Nucleophilic Addition

REACTION:
$$R-C \nearrow R^{1} \xrightarrow{\text{KCN(aq)} / \text{H}_{2}\text{SO}_{4}(\text{aq})} R-C-C \equiv N$$

$$R^{1}$$
Carbonyl
Group

Carbonyl
Group

Mechanism

Cyanide ion (:CN⁻) comes from KCN(aq) and acts as a nucleophile due to its lone pair of electrons, attacking the carbon (with partial positive charge) in the carbonyl group. Carbon-carbon bond forms. The carbon-oxygen double bond breaks to a single bond, giving the oxygen a negative charge. The negative oxygen is protonated in dilute acid (H_2SO_4), forming a hydroxyl group. Hydroxynitrile is formed. CN and H are added to the carbonyl. **Addition** reaction.

$$R \xrightarrow{\delta_{+}} C \xrightarrow{\delta_{-}} R^{1} \longrightarrow R \xrightarrow{C} -R^{1} \longrightarrow R \xrightarrow{C} -R^{1}$$

$$CN$$

$$R \xrightarrow{\delta_{+}} C \xrightarrow{\delta_{-}} C \xrightarrow{R^{1}} R \xrightarrow{C} -R^{1}$$

Notes:

 HCN is sometimes written as the reactant, but HCN is very reactive and dangerous however. By using KCN in dilute acid, the same product can be formed as with HCN.

Hydroxynitrile

If a chiral carbon centre is formed in the product, the final product mixture will be **racemic** containing both enantiomers in a 50:50 ratio. This is because carbonyl groups are planar and there is equal chance of the :CN⁻ nucleophile attacking the carbonyl group from above or below the plane - producing two possible enantiomers in equal amounts.

REACTANTS: Alkane and Halogen **CONDITIONS:** U.V (ultraviolet) light

PRODUCT(S): Halogenoalkane and Hydrogen Halide

REACTION TYPE: Free Radical Substitution

REACTION: (example of methane and chlorine)

$$CH_4 + Cl_2 \xrightarrow{u.v} CH_3Cl + HCl$$

ultraviolet light required

Mechanism

INITIATION STEP: Halogen molecule undergoes heterolytic fission to form radical species:

$$Cl_2 \longrightarrow 2Cl \bullet$$

PROPAGATION STEP: Radical species reacts with alkane to form alkyl radical and HCl. Alkyl radical then reacts with halogen molecule, reforming another halogen radical, creating a **chain reaction**:

new radical formed

$$CH_4 + Cl \bullet \longrightarrow \bullet CH_3 + HCl$$
 $\bullet CH_3 + Cl_2 \longrightarrow CH_3Cl + Cl \bullet$

(new) radical formed

TERMINATION STEP: Radical species combine to end chain reaction:

- Heterolytic fission is the even breaking of a covalent bond (each bonded atom gets an electron and becomes a radical species).
- UV light provides the energy required for hetereolytic fission.
- Further substitution reactions can occur, eventually forming tetrachloromethane: chloromethane to dichloromethane to trichloromethane to tetrachloromethane

Mechanism

The first step of the SN1 mechanism is the breaking of the carbon-halogen bond in the halogenoalkane, forming a carbocation. The nucleophile is then able to form a bond with the carbocation.

- The **SN1 reaction occurs (usually) with tertiary halogenoalkanes** and only slightly with secondary halogenoalkanes. This is because the carbon-halogen bond is too 'crowded' by alkyl groups for the nucleophile to attack the partially positive carbon directly.
- SN1 reaction is slower than SN2 reaction.
- SN2 reaction occurs mainly with primary halogenoalkanes (and, to a lesser extent, secondary halogenoalkanes).

Mechanism

SN2 reaction mechanisms have only one step. The nucleophile attacks the carbon-halogen bond directly, forming a new carbon-nucleophile bond as the carbon-halogen bond breaks.

- The **SN2 reaction occurs (usually) with primary halogenoalkanes** and only slightly with secondary halogenoalkanes. This is because the carbon-halogen bond in the primary halogenoalkane is more available for the nucleophile to attack than the partially positive carbon directly.
- S_N2 reaction is faster than S_N1 reaction.
- S_N1 reaction occurs mainly with tertiary halogenoalkanes (and, to a lesser extent, secondary halogenoalkanes).

